Systematic Review Process

DATA EXTRACTION

By Atefeh Davoudian

Zanjan University Of Medical Sciences

Spring 1401

Why Is Data Extraction Important?

- To summarize studies in a common format to facilitate synthesis and coherent presentation of data
- To identify numerical data for meta-analyses
- To obtain information to assess more objectively the risk of bias in and applicability of studies
- To identify systematically missing or incorrectly assessed data, outcomes that are never studied, and underrepresented populations

On Data Extraction (I)

- Extracted data should:
 - Accurately reflect information reported in the publication
 - ➤ Remain in a form close to the original reporting, so that disputes can be easily resolved
 - ➤ Provide sufficient information to understand the studies and to perform analyses
- Extract only the data needed, because the extraction process:
 - > Is labor intensive
 - > Can be costly and error prone
- Different research questions may have different data needs

On Data Extraction (II)

- Data extraction involves more than copying words and numbers from the publication to a form.
- Clinical domain, methodological, and statistical knowledge is needed to ensure the right information is captured.
- Interpretation of published data is often needed.
- What is reported is sometimes not what was carried out.
- Data extraction and evaluation of risk of bias and of applicability typically occur at the same time.

Comparative Effectiveness Reviews: Clarifying Research Terminology

- In the Evidence-based Practice Center Program, we often refer to two types of tables:
- Evidence Tables
 - Essentially are data extraction forms
 - > Typically are study specific, with data from each study extracted into a set of such tables
 - Are detailed and typically not included in main reports
- Summary Tables
 - ➤ Are used in main reports facilitate the presentation of the synthesis of the studies
 - > Typically contain context-relevant pieces of the information included in studyspecific evidence tables
 - Address particular research questions

What Data To Collect?

- Use key questions and eligibility criteria as a guide
- Anticipate what data summary tables should include:
 - > To describe studies
 - > To assess outcomes, risk of bias, and applicability
 - ➤ To conduct meta-analyses
- Use the PICOTS framework to choose data elements:
 - Population
 - Intervention (or exposure)
 - Comparator (when applicable)
 - Outcome (remember numerical data)
 - Timing
 - Study design (study setting)

Data Elements: Population, Intervention, and Comparator

- Population-generic elements may include patient characteristics, such as age, gender distribution, and disease stage.
 - ➤ More specific items may be needed, depending upon the topic.
- Intervention or exposure and comparator items depend upon the extracted study.
 - ➤ Study types include randomized trial, observational study, diagnostic test study, prognostic factor study, family-based or population-based genetic study, et cetera.

Data Elements: Outcome (I)

- Outcomes should be determined a priori with the Technical Expert Panel.
- Criteria often are unclear about which outcomes to include and which to discard.
 - \triangleright Example: mean change in ejection fraction versus the proportion of subjects with an increase in ejection fraction by ≥ 5 percent
- Record different definitions of "outcome" and consult with content experts before making a decision about which definition to use.

Data Elements: Outcome (II)

- Apart from outcome definitions, quantitative data are needed for metaanalysis:
 - ➤ Dichotomous variables (e.g., deaths, patients with at least one stroke)
 - Count data (e.g., number of strokes, counting multiple ones)
 - Continuous variables (e.g., mm Hg, pain score)
 - Survival data
 - > Sensitivity, specificity, receiver operating characteristic
 - Correlations
 - > Slopes

Data Elements: Timing and Study Design

- The data elements to be extracted vary by type of study.
- Consider collecting this information when recording study characteristics for randomized trials:
 - Number of centers (multicenter studies)
 - Method of randomization (adequacy of allocation concealment)
 - Blinding
 - Funding source
 - Whether or not an intention-to-treat analysis was used

Always Provide Instructions

- Provide "operational definitions" (instructions) indicating exactly what should be extracted in each field of the form.
- Make sure that all data extractors understand the operational definitions the same way.
 - > Pilot-test the forms on several published papers.
 - Encourage communication to clarify even apparently mundane questions.

Single Versus Double Extraction

- Independent extraction of data by at least two experienced reviewers is ideal but is also resource intensive.
- There is a tradeoff between cost and the quality of data extraction.
 - > Data extraction often takes longer than 2 hours per paper.
 - A reduction in the scope of the work may be necessary if independent data extraction is desired.
- Careful single extraction by experienced reviewers, with or without crosschecking of selected items by a second reviewer, is a good compromise.

Developing Data Extraction Forms (Evidence Tables)

- To address all needs, a generic data extraction form will have to be very comprehensive.
- Although there are common generic elements, forms need to be adapted to each topic or study design to be most efficient.
- Organization of information in the PICOTS (population, intervention, comparator, outcome, timing, and setting) format is highly desirable.
- Balance the structure of the form with the flexibility of its use.
- Anticipate the need to capture unanticipated data.
- Use an iterative process and have several individuals test the form on multiple studies.

Common Problems Encountered When Creating Data Extraction Forms (Evidence Tables) (I)

- Forms have to be constructed before any serious data extraction is underway.
 - Original fields may turn out to be inefficient or unusable when coding begins.
- Reviewers must:
 - be as thorough as possible in the initial set-up,
 - reconfigure the tables as needed, and
 - use a dual review process to fill in gaps.

Common Problems Encountered When Creating Data Extraction Forms (Evidence Tables) (II)

- Lack of uniformity among outside reviewers:
 - ➤ No matter how clear and detailed are the instructions, data will not be entered identically by one reviewer to the next.

Solutions:

- ➤ Develop an evidence table guidance document—instructions on how to input data.
- Limit the number of core members handling the evidence tables to avoid discrepancies in presentation.

Sample Fields From a Table Guidance Document: Vanderbilt University Evidence-based Practice Center

- In the "country, setting" field, data extractors should list possible settings that could be encountered in the literature:
 - Academic medical center(s), community, database, tertiary care hospital(s), specialty care treatment center(s), substance abuse center(s), level I trauma center(s), et cetera.
- In the "study design" field, data extractors should list one of the following:
 - Randomized controlled trial, cross-sectional study, longitudinal study, case-control study, et cetera.

Samples of Final Data Extraction Forms (Evidence Tables)

- For evidence reports or technology assessments that have many key questions, data extraction forms may be several pages long.
- The next few slides are examples of data extraction forms.
- Remember, there is more than one way to structure a data extraction form.

Tools Available for Data Extraction and Collection

- Pencil and paper
- Word processing software (e.g., Microsoft Word)
- Spreadsheet (e.g., Microsoft Excel)
- Database software (e.g., Microsoft Access, Epi InfoTM)
- Dedicated off-the-shelf commercial software
- Homegrown software

Data Extraction Sample

	Author (year of publication)	Design/ level of evidence					
Guideline elements ^a					Intervention	Outcome/ recommendation	
			Sample	Setting	measure		
Skin care	Pittman et al. (2012)	RCT/II	59	ICU (USA)	To compare (1) bowel management system (BMS) catheter; (2) rectal trumpet (RT) utilized as a rectal fecal incontinence device; and (3) usual care (UC) consisting of barrier creams and/or a fecal pouch collector.	No significant difference in HAPU prevalence (p = .63)	
Emerging therapies	Brindle and Wegelin (2012)	Two group quasi- experimental/ III-1	85	CSICU (USA)	To evaluate the silicone border foam dressing in the sacrum area	No significant differences in the incidence between both groups (p = .3)	
	Park (2014)	Quasi- experimental/ III-1	102	ICU (South Korea)	To evaluate the silicone foam dressing in the sacrum area	Significant decrease in HAPUs incidence (p < .001)	
	Santamaria et al. (2015b)	RCT/II	313	ICU (Australia)	To evaluate silicone foam dressings when applied to the sacrum and heel in the emergency department and maintained throughout their ICU stay	Significant decrease: Overall incidence of HAPUs $(p = .001)$, sacral event $(p = .05)$, heel event $(p = .002)$	
	Santamaria et al. (2015a)	Pre-post quasi- experimental/	341	ICU (Australia)	To evaluate silicone foam dressings when applied on heel in the emergency department and maintained in ICU	Significant decrease heel HAPUs incidence (p < .001)	

Data Extraction Sample

Table 1. Quality improvement project description and quality assessment (n=12)

Sample and sample size: no information

Author Year Sample and setting Country		PIP Programs and components (in dot points)	Main results (only ICU results are listed here in projects that included non-ICU samples)		
Azuh et al.	68-bed Medical	Early mobilisation program	· PI cumulative incidence: significant decrease		
2016	ICU	 Assessing patients' mobility level 	from 9.2% in 2011 to 6.2% in 2013 (p=0.041)		
USA	Sample: patients	Introducing a new staff role: patient mobility assistant Mobilising patient: repositioning sitting on edge of	Hospital readmission of MICU: significant decrease from 17.1% in 2011 to 11.5% in		

2016 USA	ICU Sample: patients admitted to MICU with Braden Scale score < 19 n=3233	 Assessing patients' mobility level Introducing a new staff role: patient mobility assistant Mobilising patient: repositioning, sitting on edge of bed/on chair, walk with/without assistance Staff education Patients/family education 	from 9.2% in 2011 to 6.2% in 2013 (p=0.041) • Hospital readmission of MICU: significant decrease from 17.1% in 2011 to 11.5% in 2013 (p=0.001) • Significant care processes improvements in repositioning; assistance with daily living activities; bed to chair mobility (P<0.001) • Patient satisfaction: 97% (207/213). Total of 213 patients were surveyed for this item.	
Baldelli et al. 2008 USA	An ICU in a university medical centre Sample and sample size: no information	Pressure ulcer prevention bundle • PI risk and skin assessment • Elevating bed head at ≤ 30° • Moisture prevention • Repositioning • Elevating heels • Optimising nutrition • Using pressure relief mattress • Staff education	 PI period prevalence: decrease from 42% in 2005 to 20% in 2006 (significance not reported) PI cumulative incidence: decrease from 18% in 2005 to 10% in 2006 (significance not reported) 	11/16
Ballard et al. 2008 USA	2 ICUs: a 26-bed ICU (trauma, neurosurgical, and surgical combined); and an 18-bed medical ICU in a hospital	A multicomponent program Redesigned risk assessment and documentation chart Staff education Repositioning Revising existing protocols Weekly prevalence assessment Using a new skin care wipe	 PI period prevalence: reduced from >30% to <10% over 18 months (significance not reported) 	11/16

QI-MQCS*

criteria met

13/16

Data Extraction Sample

Author	Design, sample and setting	Primary outcome	Secondary outcome	Classification PU	Follow up
Lazzara and Buschmann, 1991 ¹⁷	RCT n = 74 Nursing homes	Exp.: Air -filled overlay (SOF CARE) PU Categories I-II $n = 32.2\%$ ($n = 10/31$) PU Categories I $n = 16.1\%$ ($n = 5/31$) PU Categories II $n = 16.1\%$ ($n = 5/31$) Contr. Gel mattress (No specification) PU Categories I-II $n = 31.7\%$ ($n = 8/26$) PU Categories I $n = 15.8\%$ ($n = 4/26$) PU Categories II $n = 15.8\%$ ($n = 4/26$) P = not reported	PU Healing: Air-filled overlay 58% (n = 7/12) PU improved or decreased. 41.7% (n = 5/12) increased or unchanged Gel mattress 60% (n = 9/15) improved, 40% (n = 6/15) worsened or unchanged P = not reported	Not reported	6 months Weekly skin assessments
Sideranko et al, 1992 ²⁰	RCT n = 57 Hospital Surgical intensive care units	Exp.: Static air mattress overlay (4-in. thick, Gay Mar Sof Care bed, Unikion Gay Mare industries Inc. Orchard park, New York) PU n = 5% (n = 1/20) Contr.1: Alternating air mattress overlay (1 ½ inch thick, alternating air mattress Lapidus Airfloat system, American Hospital supply Corp., Valencia, California) PU n = 25% (n = 5/20) Contr.2: Water mattress overlay (4 in. thick water mattress Lotus RXM 3666, Connecticut Artcraft Corp. Naugatuck, Connecticut) PU n = 12% (n = 2/17) NS	Mean pressure position: Alt 3800 mmHg Static air 2500 mmHg Water 2330 mmHg	Not reported	Total days not reported Mean follow up 9.4 days
Takala et al, 1996 ²¹	RCT n = 40 Hospital Acute respiratory failure, intensive care, no traumatised patients	Exp.: Carital air-float system (series of 21 double air cells). (Carital Optima, Carital Ltd.) PU Categories I-II $n = 0\%$ Contr.: Standard hospital mattress 10 cm thick foam mattress, density 35 kg/m³ (Espe Inc. Kouvola, Finland) PU Categories I-II $n = 36.8\%$ ($n = 7/19$) PU Categories I $n = 12$ PU Categories II $n = 1$	SkinT° at area pressure expose was lower at air mattress ($P < .001$) Pressure interface between skin—mattress was lower in air mattress, most prominent at sacrum (different days ranging from $P < .001$ to NS)	Grading of Shea	1-year study 14 days follow up